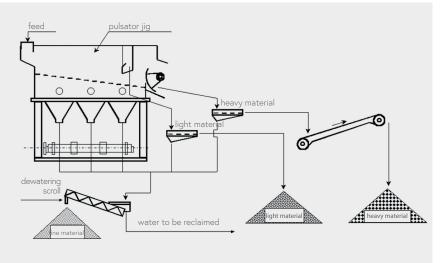




Pulsator jig


## **PULSATOR JIG SK**

#### **Application**

Form a successful seperation according to density, especially if there is only a slight difference in density, it is often not sufficient simply to whirl the material around in a counterflow. It is necessary to provide a vertically pulsating flow through the material bed that allows the material to stratify.

The SIEBTECHNIK pulsator jigs were designed for separating light and heavy components from primary and secondary feed materials according to density, e.g. contaminants from sand and gravel, slag, demolition debris, contaminated soils or for ore pre-dressing.





Current eccentric

Current eccentric

Settling bed height

Settling bed height

The amount of the control

Stroke rate nominal value rpm

Start screen

Activation

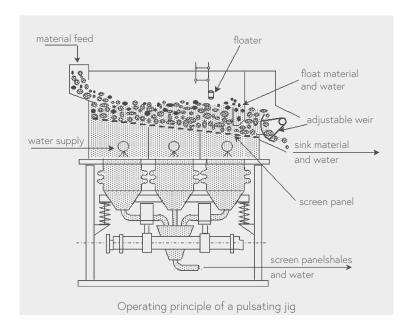
Start Stop Automatic Local acknowledge test

HMI mask of the control

Typical process flowchart






## **Technique**

The main component of the SIEBTECHNIK pulsator jig is a base frame of steel with the assembled jig-box on top of it. The jig-box is equipped with a screen panel made of polyurethane with steel reinforcements. This panel is easily exchangeable. The jig-box is flexibly connected to the oscillating water box via rubber compensators.

Via connecting rods, the water box is connected to the eccentric drive, situated beneath it. The eccentric drive optionally allows an adjustment of stroke height and stroke frequency.

The fine shale material is removed through a collecting flute situated underneath the water box. At the end of the screen panel there is a vertically adjustable discharge chute for the light material and a weir operating as a discharge device for the heavy material. This passive discharge system is advantageous with respect to wear and tear as there is no need for its permanent movement in the abrasive material. The controlling of the weir is based on an automatic floater switch.

### **PULSATOR JIG SK**





Scan QR code and watch informative video!

#### **Function**

The filled water box is put into harmonical oscillations by the eccentric drive. The water pulsates according to the rhythm of these oscillations, thereby providing the stroke necessary for stratification.

The feed material moves towards the overflow outlet, forced forward by the inclination of the screen panel, the stroke and the flow of water. The main effect of the stroke is the stratification of the feed material according to density.

At the end of the screen panel the light material (e.g. carbonized wood, shells), which is stratified near the water surface, is directed to the discharge chute crossing the direction of the water flow.

The heavy material (e.g. quartz, gravel, etc.) is discharged through the automatically controlled adjustable weir.

The separated materials are dewatered on suitable machinery, for example vibration troughs.

#### **Technical Data**

| Pulsator jig                      |                   | SK 8                                                   | SK 16          | SK 24          |
|-----------------------------------|-------------------|--------------------------------------------------------|----------------|----------------|
| width of jigging bed              | mm                | 800                                                    | 1.600          | 2.400          |
| length of jigging bed             | mm                | 2.500                                                  | 2.500          | 2.500          |
| surface of jigging bed            | m <sup>2</sup>    | 2                                                      | 4              | 6              |
| other length available on request |                   |                                                        |                |                |
| capacity* (gravel)                | t/h               | max. 50                                                | max. 120       | max. 180       |
| feed grain                        | mm                | 2 to 32, max. 60 (weight percantage 0 - 2 mm, max 20%) |                |                |
| water needed                      | $m^3$             | to approx. 150                                         | to approx. 250 | to approx. 400 |
| motor power                       | kW                | 11                                                     | 15             | 22             |
| stroke height                     | mm                | for all machine sizes adjustable to 120                |                |                |
| stroke frequency                  | min <sup>-1</sup> | for all machine sizes adjustable to 100                |                |                |
| weight without material           | kg                | approx. 5000                                           | approx. 9000   | approx. 12000  |

<sup>\*</sup> The capacity depends on grain structure, grain size, difference in density between light material and heavy material, light material content and even spreading of the material along the whole width of the jigging bed. The use of an adjustable conveyor trough is recommended.

# One Solution. Worldwide.



SIEBTECHNIK TEMA provides more than 50 local support offices worldwide as well as main sites located in:

Mülheim an der Ruhr, Germany | Rijswijk / The Hague, The Netherlands | Madrid, Spain Daventry, Great Britain | Mundolsheim, France | Sydney & Perth, Australia | Cincinnati, USA Tianjin, China | Moscow, Russia

We are experts in the field of solid-liquid separation and the processing of bulk materials

Automation | Channel conveyors | Crushing & Milling Equipment | Control Screening Machines Decanter | Dryers | Laboratory Equipment | Pneumatic Tube Systems | Preparation Systems Process Equipment | Pulsator Jigs | Pusher Centrifuges | Sampling Systems | Screening Machines | Screen Worm Centrifuges | Sliding Centrifuges | Vibrating Centrifuges

